The Virtue of Restraint in Virtual Education; or, Why I Refuse Student Emails

By Ronald A. Davidson, California State University, Northridge
rdavids@csun.edu

With respect to the communications revolution made possible by the personal computer and the Internet, our duty as college teachers would seem perfectly clear: don the gloves and goggles, strap into our desktop workstations, boot up, and roar down the information superhighway. The more road we chew up with online chats and discussion boards, Web-based field trips, online classes, and other Internet-related tools, the better. The word “restraint” has, for now, an odd ring to it when used in discussions of technology and education. This is understandable: as educators it is our duty to make appropriate use of the new technologies so that our students are prepared to face the future.

And yet this article is a plea for restraint. More specifically, sticking to the metaphor, I believe that setting up roadblocks that force students back onto the actual campus more than they might otherwise be there is a good thing both socially and pedagogically.

Let me begin with the social aspect by placing the discussion in the context of my own campus. I teach at a large university in Southern California. A good number of our students drive to campus from communities where they live in houses, have families, and work at full-time jobs. They park in five-story campus lots, go to class, and then leave to battle the traffic home. Our classrooms have become perfect models of Southern California civilization: collections of atomized individuals with little sense of collective identity.

In contrast, the university campus can play an important role as a model of democratic public space. It shows what our larger society can, perhaps, be more like. There one can still see a quiet but persistent display of democratic energies, from the mixing of ethnic groups to old-fashioned soapbox oratory and leaflet distribution to critical scholarly engagement with established orthodoxies and practices. In order for the campus to work as a public space, however, it needs students on it. And the more the better.

The most enthusiastic advocates of the Internet claim that public life, while anemic in physical space, is thriving online. However, an equal number (including me) reject this conclusion as sheer utopian fantasy. We can’t assume that virtual public space replaces the material sort, so I think it good practice to foster public life at least on campus. How? One way is by showing restraint in the use of the Internet. I do this, for example, by assigning readings that are kept on reserve in the library and are not available online. In addition, I refuse to accept emails from students unless they have an emergency and can’t reach me any other way. This forces students to see me during office hours, ideally causing them to hang around campus.

I recognize that these approaches annoy students, but I am reminded of perhaps the most effective (and a most annoying) user of public space in Western history: Socrates. Hanging out in the Athenian agora, ever ready to assail passersby with challenging questions or plop down to debate his ideas with others, Socrates— who never once logged on to a PC—still serves as a model democratic citizen.

Moreover, in Phaedrus, Socrates argues for the superiority of the spoken over the written word. He makes these points. Writing stores information as a crutch for memory, thereby allowing the memory itself to become weak. Furthermore, a piece of writing cannot defend itself from misinterpretation by readers. Finally, and most important, writing does not offer the possibility of dialectical back-and-forth that alone can lead people to the truth.

The point is, of course, that while live chatting takes place on the Internet, most of the time the Internet provides for asynchronous participation assignment online.
Who’s Playing First in My Course?

By Bob Eierman, University of Wisconsin–Eau Claire
reierman@uwec.edu

“Who’s playing first?” Costello
“Yeah, that’s right.” Abbott

This past fall I attended a symposium about teaching projects on our campus. One group of faculty presented a set of projects they had done that involved giving students control over course design issues. The projects had grown out of a reading group that studied When Students Have Power by Ira Shor. The faculty presenters said that they let students design the syllabus and that the students typically created a rigorous course that was enhanced by the student ownership. I think I’m a student- and learning-centered teacher, but I’m also a teacher who has determined essentially all the course structure. So a few days before classes started, I decided NOT to spend my last few hours before the opening of the semester organizing, selecting, and deciding on syllabus issues, but to step (off a cliff?) into a world where students have power. Would chaos ensue if I gave students power in my general chemistry class?

The start of the semester in general chemistry felt unsettled as I went through the first few lectures without a syllabus. My strategy was to wait until students asked about some organizational issue and use that question as a segue to a discussion about what they wanted in the syllabus. At the end of three lectures, no one had asked about any organizational issue; they seemed oblivious to the potential for high drama that could occur with no agreement on course issues. I cracked first and told them of my intent to let them decide the major course structural issues. That first conversation was halting, dispersed, and punctuated with silences. We decided to drop it for a day and return to it during the next lecture. But once students got the idea, things began to move. We created a student committee to brainstorm suggestions, report to the class, and negotiate with me.

The committee’s first act was to name themselves the “Squadron.” We hashed out a syllabus over a couple of weeks, using suggestions that came from students. The final syllabus wasn’t greatly different from the usual, but the students negotiated all aspects, e.g., late homework policy, number of quizzes and exams, and exam formats, and voted to approve the syllabus as a class. I continued to have weekly discussions with the Squadron that covered a range of course organizational topics. Squadron members became an open communication channel between me and the rest of the class. Requests from students started small, like which days assignments would be due, but as the semester passed they became larger, like the inclusion of multiple-choice exam questions. We negotiated a system in which students could opt to write a paper instead of taking one of the one-hour exams (about five students actually did so). It was a stretch for me to honor a persistent request for extra credit, but I made the stretch and, for the first time ever, gave extra-credit assignments in lecture and lab. The negotiated extra-cred it system, while still not a big hit with me, enabled diligent students to raise their letter grades by a fraction and seemed to provide a large morale boost as the semester played out, something I appreciated.

So who is playing first in my course: me or my students? For years, I have tried to encourage students to take responsibility for their own learning. However, I’ve done it by saying that they should do it rather than by empowering them to do so. This experiment with letting students have significant say in decisions about course structure has led me to believe that empowering students to make decisions about the course is a great way to get them to take responsibility for it.
Taking an Online Course: What Influences the Decision

Increasingly, students are able to decide whether they will take a course online or in the traditional classroom setting. Robinson and Doverspike (reference below) were interested in why a student might choose one of those environments over the other. Obviously, their results are of special interest to those who advocate online learning and can be of use to those who design online learning experiences.

Students in this sample—mostly women, mostly in the traditional 18-23-year-old category, and all psychology majors—completed a questionnaire that included a description of a fictitious experimental psychology course to be offered online. Students were asked about the likelihood of their taking this proposed course as well as questions about general attitudes toward online courses, whether they thought they might learn more in these courses, whether those close to them would approve of them taking an online course, and whether being busy might make them more likely to take an online course.

As for the likelihood of these students enrolling in an online course, the sample was relatively neutral: 4.38 on a 7-point scale, with 7 being “extremely likely.” Researchers attribute this result to the fact that students are familiar and comfortable with traditional classroom settings. However, they did find responses to four questions predictive of a student’s intention to take an online course. Students’ intentions to take these courses were highest when they believed that by taking an online course they would “have a better chance of getting a good grade, learning more, and making progress toward the completion of my major.” (p. 67) These students’ intentions were also highest when they reported they would take an online course if they were too busy and did not have time for a traditional course.

Students in this sample did hold some negative attitudes toward some aspects of online courses. “For example, students believed online courses would hinder faculty interaction and … this interaction is vital to learning.” (p. 66) These researchers cite other findings that challenge this belief—some reporting that students in online courses actually felt more connected to their faculty members. They also describe the various ways faculty can connect with students electronically, such as online office hours, instant messaging programs, listservs, and electronic bulletin boards.

There is value in understanding why students would select an online course over a traditional one. Equally interesting is the question of which kinds of students are better served by the traditional learning environment and which are better served by the online environment.


Leaders with Incentives: Groups That Performed Better

Faculty who regularly use group work are always on the lookout for new and better ways of handling those behaviors that compromise group effectiveness—group members who don’t carry their weight and the negative attitudes students frequently bring with them to group work. A faculty team at the U.S. Air Force Academy reports positive results from a unique approach that involved making group leaders partially accountable for their group’s success while at the same time giving those leaders some power to reward or penalize individual members based on what those members contributed.

The rationale for this approach comes from how groups function in the “real world.” In most professional contexts, leaders are to some extent responsible for how their groups perform, and those leaders also have some control over those who serve on teams with them.

Using a couple of different measures of academic ability, teams with four to six members were formed. In the experimental teams, members were told to choose a formal leader. The control groups had no formally designated leaders. The task involved selection of a publicly traded company and analysis of that firm’s financial report. Findings were presented by the teams to a panel of three financial accounting instructors. Points on this assignment represented 25 percent of the final course grade. In addition to the 150 points possible for the assignment, leaders received a 25-point incentive if their teams ranked in the top third of all these projects. Leaders received 15 points if their groups ranked in the middle third and 5 points if their groups ranked in the bottom third. Leaders were also given 25 points per group member to distribute to individual members based on what those individuals contributed to the group. “This structure allowed the incentivized team leader to function as a leader with limited control over team members while maintaining responsibility for the end product.” (p. 793)

Scores showed that the teams with leaders who had these incentives performed significantly better than did the control groups. Results also documented a decrease in social loafing and improved attitudes about group work for those in teams with leaders with incentives. It’s an approach that might be worth trying in other courses where group work is being used to prepare students for collaboration in professional contexts.

Student Comments on Course Ratings: A New Lens

Who hasn't been hurt, depressed, and otherwise provoked by student responses to those open-ended questions routinely included on course rating forms? Often the comments carry emotional messages, and often faculty respond with an equal amount of feeling. Hodges and Stanton (reference below) challenge us to consider how some student comments may “give us valuable insight into intellectual challenges common to novice learners in our field.” (p. 280) They suggest we view student comments differently—that we bring to the analysis of them a “scholar's eye” (p. 280) that might help us better understand the learning challenges student face in courses.

Students don’t arrive in our classes as sophisticated learners. They may not understand that learning is a process or may “have immature beliefs about how learning happens or how knowledge is created, not recognizing how tentative, iterative, and effortful a process it is.” (p. 280) If that's the case, student comments on performance may reveal beliefs about learning that make efforts to learn very challenging. To illustrate, the authors offer a sampling of common student comments made in three different kinds of courses.

Quantitative Classes—classes where students do lots of problem solving Student comment: "Problems on the exams were nothing like those covered in class or assigned in homework.”

Most faculty find this comment especially irritating. Problems done in class are like those that end up on exams, and so students aren’t paying attention, aren’t spending time doing the problems, or just aren’t studying enough. All these things may be true, but it is also possible that “these student comments reflect the differences in the way novices approach problem solving compared to experts.” (p. 282)

As documented by other research cited in this article, students “rush to an answer, spending very little time thinking through various choices of procedure. They focus on the importance of problem solving on the answer rather than the process.” (p. 282) Because students are so answer driven, they don’t step back and see the overall structure of a problem—which is just like others done in class and on the homework.

How can teachers help students develop this kind of insight? “Our problem-solving exercises for students must explicitly require them to spend meaningful time analyzing principles involved and envisioning how those same principles might be ‘disguised’ in other settings.” (p. 282) This can also be accomplished by having students “annotate” their work on selected problems—that is, they explain in writing what they are doing and why. The same insight can be achieved by having students explain to other students how they solved a problem.

Writing-Intensive Courses

Student comment: “I don’t understand the grading. We need to know what counts for points and what doesn’t.”

When writing papers, students often try to write what they think their teachers want to read. That’s not entirely wrong—writers do need to write with the audience in mind. But students frequently translate this as conveying the “right” information—interpreting the poem the same way the teacher does—not as “the ability to construct an interesting, persuasive argument.” (p. 283) Most writing assignments are designed to get students to produce information; students are much more comfortable reproducing information already received. So when they write a paper that says what their teacher has said and they don’t do well, they are confused. They don’t understand the grading criteria. One obvious solution is to have students openly discuss in class and with each other exactly what the writing task requires.

Students are also naïve about what the writing process entails. For them, the first write is when the major time investment occurs. Editing is a simple matter of spell-checking and proofreading. Having students revise and rewrite helps them see how ideas can grow and change.

Courses with Active Learning Formats

Student comment: “I didn’t come to college to teach myself.”

Students expect to learn from teachers, not from fellow students. And as teachers observe students’ feeble first attempts to figure things out for themselves, we are quickly convinced that telling is definitely the more efficient way. “We... are frequently conditioned to think of teaching as telling, transferring our understanding and habits of mind by sheer force of will to our students.” (p. 284)

It is always wise to share with students the educational rationale behind a decision to have them work out problems in groups, to generate examples with others, or to arrive at consensual decisions. The authors cast the problem and solution this way: “Too often we provide students with answers in our disciplines before they even understand the questions. Focusing more of our classes around the questions in our discipline and how we strive to find some answer to them can help students see the processes involved in the human quest for knowledge.” (p. 285) Discussions like these move students beyond those conceptions of teaching as information transfer.

The section on the course evaluation that asks for student comments is usually designed to provide insights as to how satisfied students were with a course. These authors wonder if that’s what we really want to know. They suggest some alternatives: that we ask students how their thinking about a subject may have changed or what the course has contributed to their development as thinkers or individuals. They recommend that we keep ourselves and students focused on the kind and quality of learning experiences offered by and through the course.

Faculty Self-Disclosures in the College Classroom

By Sarah M. Ginsberg, Eastern Michigan University
sginsberg@emich.edu

While interviewing university faculty for a study about classroom communication, Jim,* a professor of history, made this comment about a colleague he had observed teaching: “I was really amazed, when I saw him teach, how little of his personality you see.” This starkly contrasted with his perception of his own teaching style, about which he said, “I try to use humor a lot. My dad says I just think funny, you know, and I do; it’s hard for me not to joke around.” This comment started me wondering about how much of ourselves we let our students see.

Early in my own teaching career, I was acutely conscious of trying to find that perfect balance between the desire to let my students know that I was a whole person, with life experiences that influence my understandings of our world and the course content, and the desire to limit how much of my personal life I exposed in my classroom. Although watching my own children develop language is potentially pertinent to the views of language development discussed in class, I don’t want students to know intimate details of my family life, nor do I want to bore them with endless cute-child stories.

My research has suggested to me that there is great value in college faculty exposing a few aspects of their personal lives to their students. In my study, conducted at a public, comprehensive university, I found that when teachers were willing to share small characteristics of themselves, their students found them to be approachable and motivating. Among the 64 percent of the faculty study participants who were perceived by their students to be effective communicators, 100 percent of them were observed disclosing small facets of their personal lives in the classroom.

The details these faculty shared related to course content. For example, Joan, an English professor teaching about writing brochures for educational purposes, said to her students, “I picked up a brochure for our project when I took my son to his swimming lesson.” In this statement, she shared a bit about her life beyond the classroom and demonstrated how course content connected with her real life. When another faculty member, Maura, shared that she has a daughter beginning college at another university, she showed that she understands from multiple perspectives what it is like to be a college student.

Jim and Maura reflected on and discussed further their struggle between the personal and the professional natures of the relationships. They wanted their students to feel that they are accessible and friendly, but not inappropriately so. Jim signs his first name to his emails to be “informal” but actually wants to be called “Professor.” He was aware of the potential for the informal, personal conversations with his students to be misconstrued and was cautious “because I don’t want students to feel too close.” Maura realized that her early career naïveté put her professional credibility in jeopardy. Since then, she has worked “hard to find the right place” between the formal and the informal, and has “found that niche.”

In sharing my research with faculty, I have been intrigued by their responses to the idea of self-disclosing in the classroom. One memorable professor stood up and exclaimed, “That is fine for faculty who lead traditional, mainstream lives! Faculty who are gay or lesbian cannot share that kind of information without fear of reprisal.” I agree that there are many aspects of our lives that we cannot or should not share with our students. On the other hand, I do think that each of us probably has some small characteristic, be it our love of chocolate or our preference for cats over dogs, that humanizes us to our students. The students in this study repeatedly described the faculty who disclosed small personal details as “approachable” and “comfortable” to talk with. Although faculty members’ approachability cannot be completely accounted for by these self-disclosures, they were noted specifically by the students as contributing to it. If our goal as faculty is to have students seek us out when they are in need of assistance, it is worth considering the value of these small personal disclosures toward increasing our accessibility.

*All names are pseudonyms to protect participant identities.

Virtual Education

From Page 1

Synchronous communication: you send me an email, and I later reply to it. I post a comment on a virtual bulletin board, and you later comment on it. This static format—Socrates’ written word—is not terribly efficient. A student sends a question by email, and the teacher answers it. The answer raises a new question, which will have to wait for a new email exchange to get answered. Many students may not bother with the follow-up. I have found it much more effective to ban emails and insist on holding discussions, with their dialectical fluidity and open-endedness, face-to-face with students during office hours.

Internet-based technologies can enhance our effectiveness as teachers. When used without restraint, however, they can allow students to be under-engaged in the process of their education and, perhaps, in the larger social world.
A Brain-Friendly Environment for Learning

By Davie Davis, University of Central Missouri
dsdavis@cmsu.edu

Thanks to new technologies of brain imaging and major breakthroughs in cognitive research, neuroscientists now know more about the functioning of the human brain than ever. This new knowledge should help us revolutionize our teaching methods, but what about those of us who can’t tell a hippocampus from a hippopotamus? As an English professor whose gray matter has frequently proved more or less impervious to scientific discourse, I decided to tackle this challenge head-on, so to speak. Here are some of my findings, along with their implications for teaching and learning.

1. What we always suspected has been confirmed by research: students really are incapable of “paying attention” in class—at least for extended periods of time. We now know that the upper limit of the human brain’s capacity to pay focused attention to a lecture is about 20 minutes. After that, students’ brains are wandering, reflecting, consolidating, and resting. We may as well accommodate this tendency by alternating lecture with other modes of learning, such as questioning, talking, and writing, in order to allow students to review and assimilate what they’ve just learned.

2. The most effective learning is based on prior knowledge. Each neuron in the brain contains treelike structures called dendrites. With the acquisition of new knowledge, neurotransmitters fire across the synapses between neurons, resulting in the branching of new dendrites from old, forming an ever-widening network of learned information. Just as we wouldn’t expect to see a tree suddenly materialize in the sky, with no visible connections to the earth, we shouldn’t expect our students’ brains to form strong new dendrites with no links to existing ones. Here’s one of my own strategies for building on prior knowledge. As the American nuclear family continues to morph into a multiplicity of subforms, most students have become familiar with the resultant proliferation of stepchildren and the conflicting loyalties generated by their presence. I let the class discuss these family issues before reading Hamlet.

3. Thought and feeling are inseparable brain processes. Traditional Western pedagogy encourages students to approach their studies from a purely objective, rational perspective, with their feelings temporarily checked at the classroom door. However, researchers have found that the functions of cognition and emotion are so intertwined in the brain as to be indistinguishable from each other. In fact, a portion of the brain’s emotion system called the hippocampus is in charge of transferring information into memory. This means that information associated with values and feelings will be more readily learned. So even in science disciplines students should be encouraged to develop passionate stances on issues such as cold fusion or stem cell research so that they will retain information more efficiently.

4. Perceived dangers cause the brain to downshift to its most rudimentary processing mode and bring learning to a halt. A substantial body of research indicates that negative emotions such as stress and fear cause the brain to be flooded with cortisol, a chemical that seriously impedes the ability of the hippocampus to retain new or call up old information. In addition, both stress and fear cause the brain to abandon the complex thought processes of the neocortex and revert to the reflexive behaviors of the limbic system and the reptilian complex, both of which date back to an early stage in the brain’s evolution. These phenomena account for the student who is so overcome with test anxiety that she literally “can’t think.” They also explain why the student who is fearful of the teacher, the subject, or both often takes refuge in primitive slouching and glaring behaviors. Teachers can mitigate some of these effects by using multiple assessments rather than two or three major tests and/or by creating less-threatening learning scenarios, such as small groups or talking partners.

5. The search for meaning is innate. The old analogy of the human brain as computer has been rendered inadequate by new research; likewise, the left brain/right brain model has largely outlived its usefulness. We now know that unlike the computer, the human brain constantly seeks meaning and pattern in a rich milieu of emotions, facts, associations, memories, and other inputs; moreover, the brain constantly traverses between its two hemispheres in an attempt to reconcile and synthesize information from both realms. We can create a brain-antagonistic environment by presenting isolated, random, one-dimensional information, or we can capitalize on the brain’s hunger for meaning by providing information in relevant contexts that yield both intuitive and logical meaning. For example, in the Colorado School of Mines’ undergraduate engineering program, students apply ideas from Descartes and Shakespeare to engineering problems, complete open-ended design projects, investigate relationships between engineering and social issues, and engage in a continual search for connections between engineering and other aspects of human life.

The above is by no means an exhaustive inventory of the findings of 21st-century brain research. However, for me, these principles have provided a good start toward understanding how to provide a brain-friendly environment for my students and myself.