Psychological Perspectives on Managing Classroom Conflict

By Jim Guinee, University of Central Arkansas - JamesG@uca.edu

For the past 10 years I’ve given a presentation on managing classroom conflict to new faculty at my institution. I’m a psychologist, so that’s the unique perspective I offer. Throughout the presentation I emphasize the need to analyze “cognitive errors,” which I define as the faulty assumptions or misinterpretations commonly made by new (and not so new) faculty. These ways of responding to negative student behavior are ineffective; sometimes they even make it worse. I’d like to highlight several of these.

Most new faculty want to come across as being nice. When negative behaviors surface, they secretly hope they will disappear, particularly due to the mistaken belief that being nice and being respected always go hand in hand. Unfortunately, generally the negative behavior not only doesn’t disappear, it gets transmitted to other students like a virus.

Then there’s the error I call the “misperception of colleague individuality.” Each class, each teacher, has a different set of rules. For example, some instructors ban laptops from the classroom, while others require students to sit in the front row and still others do not allow makeups under any circumstances. Then there are those teachers who don’t specify any policies either verbally or in writing. For students who encounter a different set of rules in every class, it’s confusing. That’s why I advise new (and experienced) instructors to be very explicit in the syllabus regarding classroom rules and consequences (e.g., cell phones, leaving class early).

Finally, new instructors tend to personalize negative behavior from students. For example, a student may be taking 15 hours and working full-time to pay the bills. Is it any surprise that this student dozes off during an afternoon class? How should an instructor interpret this behavior? That’s an important question because how a teacher reacts depends on how he or she has interpreted the behavior. In this case I’d say you might want to give the student the benefit of the doubt. Don’t immediately see this as a student problem. You may still need to wake up the student, but that’s not because you put him or her to sleep.

I also offer new instructors a variety of helpful suggestions, many focused on the relationship that exists between teacher and student and the behavioral responses that are important in most interpersonal relationships. For example, I recommend specifically disclosing to another person your “issues” or “pet peeves.” On the first day of class I share with students something I call “10 simple rules for taking my class.” One of the rules is titled “Stay seated unless you see smoke.” No doubt every instructor has encountered students who for various reasons feel it necessary to begin packing up before class is dismissed. Early on in my teaching career I realized not only that I found it distracting, but it made me ANGRY. Therefore I do what we call in counseling “owning” the problem. I acknowledge to the students that it is something that bothers ME, therefore it is MY problem. Amazingly this proves to be very effective and almost completely eliminates the behavior from ever occurring.

Although we’ve been discussing common behavior problems, students are not always in complete control of their behavior. Some negative student behavior is the result of psychological problems. My experience with new faculty is that they are often compassionate and want to help, but they are afraid they might offend the student. They also feel a bit reluctant to discuss personal issues with students. On my campus, we have a link on our website specifically for assisting faculty with counseling center referrals [www.uca.edu/counseling/howtomakeareferral.php]. We encourage faculty to call and discuss observations, and we suggest strategies for responding to a troubled student.

In conclusion, I recommend improving classroom management by examining the individual you are in control of—yourself. By looking at such areas as distorted thinking, disclosure to students, and behavioral changes, you can effect much positive change in the classroom and do so without even getting involved with students over the behavior issues.

Subscriber Survey

The editors of The Teaching Professor would like to know what you think. Please take the short subscriber survey at www.magnapubs.com/tpsurvey.

In This Issue

Modeling Stupidity .................. 2
Teaching Risk-Taking in College Classrooms ......................... 3
Five Tips to Help Guest Lecturers Succeed ............................ 4
Drill and Practice ........................ 5
Writing Comments That Lead to Learning ......................... 6
Modeling Stupidity

By Matthew Fleenor, Roanoke College, VA - fleenor@roanoke.edu

I’ve just finished reading a 2008 essay by Martin Schwartz that was published in the Journal of Cell Science. It’s a piece regarding the “importance of stupidity” when doing research in the sciences. Schwartz argues that during his graduate research in the sciences, “the crucial lesson was that the scope of things I didn’t know wasn’t merely vast; it was, for all practical purposes, infinite.” As an assistant professor at an undergraduate college that encourages student research, I’ve wondered whether I should be conveying the sense of vastness regarding what I do not know. Or putting the question more bluntly, how candid should I be about my own lack of knowledge within my discipline?

Schwartz has persuaded me that if we do not take seriously the task of modeling this candid sense of what “I don’t know” (what he calls “stupidity”), then students will miss a big portion of what scientists call “doing science” and others might call discovery. Although he is writing primarily for a graduate-level audience, a similar perspective exists for teacher-scholars at undergraduate institutions. For example, I recently taught our upper-level astrophysics course, and my research background is in galaxy environments and evolution. When pressed on my knowledge of interacting binary systems with black holes, I was stretched to the limit. As questions arose within class about the topic, I responded, albeit uncomfortably, “Well, that’s a good question, but I don’t know the answer.”

However, that admission enabled students to witness the research process and the modeling of what Schwartz refers to as “productive stupidity.” By voluntarily admitting that I did not know but would like to find the answers, I was able to demonstrate to the students how to search the archives of the Annual Review in Astronomy and Astrophysics, locate and retrieve relevant titles, and scour an article for pertinent graphical and textual information. What resulted from our inquiry were some answers, but more important, a discovery of more rich and well-informed questions. Once I got over my fear of “looking stupid,” students were freed to delve into the act of research and discovery. That doesn’t happen when teachers proclaim to know all the answers.

The idea of modeling stupidity does not apply only to the sciences. In fact, all academic disciplines submit themselves to a kind of scientific process, where ideas are put forth, research is conducted, and modifications to those ideas are made as a result of what emerges from the research. Traditionally, the professor is viewed as an exalted learner, the all-knowing sage, or a fountain from which the students are to come and drink. In contrast, “modeling stupidity” presents students with a real picture of how we all acquire knowledge. The bittersweet words of Soren Kierkegaard also demonstrate this form of knowledge acquisition: “It is sheer illusion to think that in relation to truth there is a shortcut . . . every individual must essentially begin from the beginning.” However, this timeless process of starting over from the beginning is often not modeled in the college classroom or in our textbooks.

Yes, this model raises troubling questions, among them, “What if my students (and/or colleagues) think that I’m not qualified to teach?” That thought is especially frightening for those not yet tenured. But I have to say the fear of inadequacy revealed by the question does impede the important task of modeling stupidity. Although these opportunities arise more frequently in research and independent study settings with our majors, we do a disservice to the everyday students in our general education courses when we fail to approach them with the same candor and honesty. We must remember that we are not merely transfer-
Teaching Risk-Taking in College Classrooms

By E. Shelley Reid, George Mason University, VA - creid1@gmu.edu

Are your students too conservative?

I don’t mean their politics—I’m talking about their attitudes toward ideas and actions that are new, difficult, or complicated. Many of my writing students are conservative learners: they worry about grades and want to “play it safe,” they don’t take time to imagine alternatives, or they have low skill or confidence levels that reduce their abilities to try new things. And sometimes my own teaching or grading practices undermine my invitations to take the intellectual risks that are crucial to student learning.

In The Elements and Pleasures of Difficulty, Patricia Donahue and Mariolina Salvatori note that literary scholars “light up” when they encounter a moment of textual complication; these readers see the problem as interesting and look for a way to dig into it. Less-experienced readers, on the other hand, often assume that the problem is either a deliberate obfuscation or a result of their own ignorance, and they look for a way around it. Since students in most of our classes are beginners in our fields, they may see difficult or risk-taking behaviors as having insufficient pay-off for the time invested.

To help our students, we need to request, model, support, and reward academically risky behavior: asking questions, facing difficulty, dwelling in uncertainty, and advancing untried hypotheses.

To start with, we need to directly ask for academic risk-taking behavior and identify it whenever we ask for it, so students know we perceive and value the challenges they face. Here are some more strategies to try in class.

Model risk-taking moves: I sometimes ask my students to take a safe proposition (“College basketball harms some athletes”) and move it “out on a limb” in stages: What would be a riskier, less-believable statement? What would seem even loopi-
er? What would be entirely out of bounds? Having stretched to the point of sheer mania (“College basketball is destroying American families”), students can step back a notch but still consider an interesting, difficult problem (“College basketball recruiters shouldn’t make high-pressure pitches”). Showing students examples of valuable risk-taking helps them move beyond a standardized-exam mind-set. Having students play with complex issues can help them develop risk-taking muscles.

Use peer-based learning: Students are more willing to reveal uncertainty and try out risky ideas with a few peers than in a full class. Faculty using Think-Pair-Share (T-P-S) exercises take advantage of this notion: they pose a question, allow a minute for individual quiet thought and a minute to discuss possible answers with a peer, and then ask for shared answers. Matching T-P-S or another peer-group exercise with a deliberately, overtly risky request—addressing a tricky problem-set, questioning a commonsense conclusion, suggesting alternate solutions—can increase both student interaction and risk-taking behavior.

Build assignments around questions: Donahue and Salvatori suggest asking students to write a “difficulty paper,” an account describing how they struggled with a text and why they think they struggled. The point of the essay is not to solve the problem, but to explore the possibilities. When we design formal assignments—not just no-credit exercises—that ask students to identify and reflect on questions, problems, or complications without moving to solutions or arguments, we demonstrate our interest in question-asking behavior and support students in practicing it.

Create low thresholds and allow “soft openings”: Not all students have the same level of risk tolerance. We can scaffold risk-taking behavior, beginning with risks most students can participate in (brain-storming questions) before we move to more complex tasks (proposing solutions). Students also need space in which to perform as risk takers. When some restaurants first open, they welcome a few guests but don’t advertise widely; staff can work out the kinks before scheduling the grand opening. Having students share working drafts, give mini-presentations of an in-progress project, or complete practice exams in groups presents an opportunity for risky performance. When we actively encourage, model, and support risk-taking actions at these stages, we help students take full advantage of the moment.

Reward academic risk-taking: If I engage students in T-P-S with a risky enterprise and then dismiss some of the shared answers as not worthy of discussion or I severely down grade an essay draft because of grammatical or organizational errors, I send mixed messages: take risks, but don’t screw up. Many students will decide that it’s better to be safe and right than risky and wrong. It’s true that on exams and major essays we cannot allow errors to earn full credit. However, we should remember that Olympic divers and skaters earn higher scores for imperfectly performed difficult moves than perfectly performed easy moves. I can create a line in my grading rubric, a section of an exam, a reflective assignment component, or a statement about partial credit that shows students how I will reward particular kinds of risk taking even if the final product is imperfect. These days, I also invite students to tell me about risks they’ve taken in a writing assignment: even if an action doesn’t seem risky to me, I can praise the student for his or her willingness to try something that felt difficult.

Risk taking and right-answer achieving can appear to be contradictory goals for students in our classrooms. When the correctness stakes are high and no other criteria are visible, everyone plays it safe. If we want our students to take risks, we need to create classrooms in which, at least in some designated zones, risk taking is more visible, accessible, and desirable than the alternatives.
Five Tips to Help Guest Lecturers Succeed

By Sandra Allen, Columbia College, IL - sallen@colum.edu

There are only two types of guest lecturers: those who are effective and those who aren’t. In general, we invite guest lecturers to extend the students’ horizons and broaden their perspective. We also invite guests who augment our own store of professional information and impart real-world knowledge. But how many of us have sat in embarrassment as the guest lecturer veered off topic or shared inappropriate anecdotes and outdated war stories?

All too often, it’s not the guest speaker’s fault. To quote the comic strip character Pogo: “We have met the enemy and it is us.” Sometimes we don’t prepare our guest speakers, erroneously believing that anyone accomplished in his field will be effective in the classroom. To better guide colleagues, and provide direction and assistance to guest lecturers, I’d like to share five tips.

First, make sure the guest lecturer has the right stuff. What a lecturer knows and has experienced must be relevant to the topics planned for class that day. Avoid the temptation to invite a favorite colleague or a professional from your former business career unless you know for sure that the person can provide students with a meaningful learning experience.

Second, establish ground rules about various issues. Let the speaker know how much time you’ve allotted and what you expect to be covered. When a guest speaker exceeds the allotted time, students often signal their impatience, which a guest may interpret as grave disrespect. Remember when you first started teaching and the material ran out before you did? Guide your speaker by offering advice on how much time it takes to cover the subject. Establish beforehand whether your guest is willing to respond to follow-up emails from students.

Third, background the guest. Share a copy of the syllabus; lecture notes from previous class sessions; and, if available, those from the session that will follow. Go through the expected learning outcomes for the course, and inquire about expected outcomes for the guest’s presentation. Gently remind the guest that the lecture is not a stage for performance but an opportunity to share information with students.

How many students are in the class, and how are they likely to behave? Are the students in this class chatty or quiet? Will they answer questions? Ask them? If you use a seating chart, share it. Describe the layout of the classroom, and find out what equipment the guest will need. If those needs exceed your technological expertise, arrange for someone from the IT department to backstop you.

Fourth, and perhaps most important, manage expectations—the guest’s, yours, and the students’. Accomplished individuals and business professionals are accustomed to audiences who listen and appreciate their insights, wisdom, and talent. But we college professors know better. We know engaging students is not easy. We know students’ questions and interpreting what they may not have understood. If we don’t understand the guest’s material, neither will the student. It’s important to have a clear understanding of the depth and breadth of the speaker’s topic.

To successfully manage students’ expectations, share the speaker’s bio with them and explain what the speaker brings to their learning experience, not the day of the guest’s appearance but at least a week before. Tell them what will be covered in the presentation and how long it will be. Ask students to develop questions they want the guest to answer. You may want to guide them to relevant work done by the guest. If it’s normally a challenge to get them to participate, consider assigning extra-credit points to students who ask the speaker cogent, well-reasoned questions. Be honest with them. Explain your expectations for their behavior during the lecture. Make the guest human and approachable. Students who are intimidated won’t interact with the speaker.

Fifth, help the speaker to evaluate the presentation. To get the students’ opinion, I ask them to respond to two questions: (1) What did you learn? and (2) Why does it matter? I then share their responses anonymously with the speaker, adding my impressions as well.

Over time, my experience with guest lecturers has become increasingly positive and constructive for the guests and my students. I have learned that nothing comes from nothing. Preparation pays dividends for all three participants—speaker, professor, and student.

Modeling Stupidity

FROM PAGE 2

ring knowledge about our disciplines; more important, our teaching models the correct and incorrect ways to approach learning and knowledge acquisition. If our students do not witness our own courageous modeling of stupidity, how will they ever find courage within themselves to do the same?
Drill and Practice

By Larry D. Spence, Penn State University
- lds7@psu.edu

Like dying gladiators, the 8-year-olds struggled up and down the soccer field. Out of shape, they’d lost their last match. At practice their coach demanded, “Run till you drop.” The players ran slowly, limping and fish mouthing for air.

With all the confidence of a person who had just read a book on how to coach soccer, I said, “You know, it’s no fun to run laps. It feels like punishment.” The coach spun to face his aging assistant coach, “Did you see how we lost that game? The kids had no gas in the last quarter.”

I acknowledged their failure but foolishly proceeded to advise him. “The kids love to run in a practice game.”

“I ran laps when I played. Did you play? No? Well, we always ran laps. Soccer players always run laps.”

Before I could stop, I blurted, “But the book says …” His glare signaled the line I had crossed. “Look,” he barked. “If you want to be the coach, say so. You can have the job anytime you want.” I backed away, gathering balls and folding jerseys.

Still, sometimes the book is right. Running laps gives a cardiovascular work-out. If you play a sport where endurance is key, laps are fine. But soccer players run in explosions and need practice starting, stopping, running in short bursts with an occasional long run. That is what the book said.

Some versions of tag work—like a game of soccer tag called, “Sharks and Minnows.” A few players begin as “sharks.” They try to kick a soccer ball below the knees of the running, dodging “minnows.” When hit, “minnows” become “sharks” until there is only one “minnow” left—the winner. This game demands continuous motion, darting, stopping, and running. Players have to make quick decisions under pressure.

The kids on our team ran themselves to exhaustion playing “Sharks and Minnows.” While playing they also practiced accurate passes, quick movements, balance, peripheral vision, teamwork, spacing, and focus on the ball. The coach saw the difference. He started ending every practice with a round of “Sharks and Minnows” and the rest of season the team didn’t run out of gas in the fourth quarter.

Hours of impatiently adding six place columns, doing countless long division problems, repeating state capitals’ names, and reciting The Merchant of Venice ruined my life in school. I hated drill, as the teachers called it, or busywork as we called it. Watching the clock, seeing the clouds speed across the winter sky, thinking about the comic book I was going to write—those forbidden thoughts kept me alive. The drudgery did not kill my desire to learn, but it did foster disdain toward teachers and school.

Is practice necessary to learn? The answer depends on what you mean. Mere repetition does not improve performance. Of course, practice involves repetition. The soccer kids repeated the movements of running, whether doing laps or playing games. But the laps decimated their motivation, while the games incited them to greater effort because the repetition was varied.

Repetition is doing the same thing over and over to make thinking or doing automatic. Experience shows us that many employees do their jobs over and over for many years but don’t get better. Shockingly, professors who repeatedly teach the same courses rarely improve, according to research. Mere repeaters do get automatic and that is the problem.

The best expert performances, whether of athletes, musicians, chess players, surgeons, or writers, are creative and adaptive and executed with compelling grace. That requires deliberate practice, an idea based on the research of Anders Ericsson and associates. They found that expert performances in a wide range of arenas required intense exercises focused on finding and correcting minute mistakes. In practicing deliberately, students do not just repeat, but correct errors through experiments and problem-solving. The most effective teachers and coaches work to induce and amplify mistakes by disturbing repetition. Having students painfully slow down, speed up, do it backward or blindfolded, or placing them in different settings or altering sequences produces more mistakes.

Deliberate practice seems daunting when described. Is it? Anytime we can zero in on recurring mistakes and think of ways to make them more visible and demanding of corrections we’re on the right track. Here’s how an innovative soccer coach did it.

Playing defense the players charged after the ball like bears after honey. The coach stomped and whistled to stop play. “You have to communicate” he exhorted, “you have to work together as a unit and each stay in your own zone. Now try again.” Once again the defenders swarmed to the ball like filings drawn by a magnet, giving the other team a chance at an easy goal.

I expected an explosion, but the coach’s face lit with a crafty smile. “OK, this time defenders lock arms in pairs.” Attackers charged passing the ball, pushing for an opening. Defenders tugged, fell, and shouted insults at their partners, but magically they began to react to their teammates and not the ball. They played an awkward defense—but it was a defense and as the scrimmage ran on they improved. They were practicing deliberately.
Instructors who require papers spend a good deal of time emphasizing the importance of audience and purpose in writing. Writers who remember their readers and their writing objectives are much more likely to use good judgment about the decisions that go into creating an effective piece of writing. This is equally true of the comments instructors write on students’ papers. I’d like to share some suggestions, some of which I learned the hard way.

Students often react first to the number of comments on the paper. They look to see how much the instructor “bled” on their papers. They may not even read overall comments that appear at the end. Sometimes it helps to put those comments up front so that students see them first.

Notes in the margins of the papers tend to be sketchy. With little room in the margins, instructors use more underlining, coding, and abbreviating. Many marginal notes simply label a problem without further explanation or example. For instance, I have written, “There are stronger works for your POV” on papers not thinking that POV (for point of view) may be an unfamiliar acronym. Not only does this feedback puzzle and frustrate students, it doesn’t help them improve.

There is a difference between an explanation that simply shows the students how to reword or rewrite something and an in-depth explanation that discusses the reasoning behind the suggested change.

Instructors must balance the positive and negative comments, remembering the importance of positive feedback. It motivates students, is essential to improvement, and builds confidence. If students are told why something is good, they can do more of it subsequently. Papers lacking any positive feedback tend to lead to poor student morale.

Closely related is the overall tone of the comments. Instructors need to keep the tone professional. Constructive criticism goes a long way, but destructive criticism goes an even longer way. Once someone destroys your self-confidence as a writer, it is almost impossible to write well.

How many is too many? Instructors should monitor the number of comments they write on students’ papers. Although it may be tempting to comment on everything, the workload quickly becomes intolerable and too much feedback may overwhelm the students. They find it difficult to prioritize the comments and tend to retreat into simple and safe writing in an effort to avoid another barrage of comments. Or they don’t even read the comments and therefore learn nothing from the feedback. However, the major problem with the overcommented paper is that the instructor has lost both a sense of focus and a point of view.

The solution is to separate the mechanical comments and the substantive comments. The mechanical comments encourage the student to see the paper as a fixed piece that just needs some editing. The substantive comments, however, suggest that the student still needs to develop the meaning by doing more research.

When commenting on students’ papers, think of your audience and your purpose. Your job as an instructor is to reach your students to help them learn and grow. If your comments do not accomplish your goal, then it doesn’t matter how much time and effort you put into the papers.

On one of my first papers (when my hand was fresh and cramp free), I wrote, “Watch your language. A jury convicts or acquits but cannot render a judgment. The court enters a judgment on the jury’s verdict.” This comment is a more useful explanation.

In one of my first papers, when my hand was fresh and cramp free, I wrote, “Watch your language. A jury convicts or acquits but cannot render a judgment. The court enters a judgment on the jury’s verdict.” This comment is a more useful explanation.

Online Seminar Call for Proposals
Magna Publications is accepting proposals for its online seminar series. For more information on how our online seminars work, visit www.magnapubs.com/calendar/index-cat-type.html.
To submit a proposal, visit www.magnapubs.com/mos/proposal.html.